771 research outputs found

    Retrieval of canopy component temperatures through Bayesian inversion of directional thermal measurements

    Get PDF
    Evapotranspiration is usually estimated in remote sensing from single temperature value representing both soil and vegetation. This surface temperature is an aggregate over multiple canopy components. The temperature of the individual components can differ significantly, introducing errors in the evapotranspiration estimations. The temperature aggregate has a high level of directionality. An inversion method is presented in this paper to retrieve four canopy component temperatures from directional brightness temperatures. The Bayesian method uses both a priori information and sensor characteristics to solve the ill-posed inversion problem. The method is tested using two case studies: 1) a sensitivity analysis, using a large forward simulated dataset, and 2) in a reality study, using two datasets of two field campaigns. The results of the sensitivity analysis show that the Bayesian approach is able to retrieve the four component temperatures from directional brightness temperatures with good success rates using multi-directional sensors (SrspectraËś0.3, SrgonioËś0.3, and SrAATSRËś0.5), and no improvement using mono-angular sensors (SrËś1). The results of the experimental study show that the approach gives good results for high LAI values (RMSEgrass=0.50 K, RMSEwheat=0.29 K, RMSEsugar beet=0.75 K, RMSEbarley=0.67 K); but for low LAI values the results were unsatisfactory (RMSEyoung maize=2.85 K). This discrepancy was found to originate from the presence of the metallic construction of the setup. As these disturbances, were only present for two crops and were not present in the sensitivity analysis, which had a low LAI, it is concluded that using masked thermal images will eliminate this discrepanc

    Climatic constraints on carbon assimilation and transpiration of sub-Mediterranean forests

    Get PDF
    Dolman, A.J. [Promotor]Waterloo, M.J. [Copromotor

    BRDFs acquired by directional radiative measurements during EAGLE and AGRISAR

    Get PDF
    Radiation is the driving force for all processes and interactions between earth surface and atmosphere. The amount of measured radiation reflected by vegetation depends on its structure, the viewing angle and the solar angle. This angular dependence is usually expressed in the Bi-directional Reflectance Distribution Function (BRDF). This BRDF is not only different for different types of vegetation, but also different for different stages of the growth. The BRDF therefore has to be measured at ground level before any satellite imagery can be used the calculate surface-atmosphere interaction. The objective of this research is to acquire the BRDFs for agricultural crop types. A goniometric system is used to acquire the BRDFs. This is a mechanical device capable of a complete hemispherical rotation. The radiative directional measurements are performed with different sensors that can be attached to this system. The BRDFs are calculated from the measured radiation. In the periods 10 June - 18 June 2006 and 2 July - 10 July 2006 directional radiative measurements were performed at three sites: Speulderbos site, in the Netherlands, the Cabauw site, in the Netherlands, and an agricultural test site in Goermin, Germany. The measurements were performed over eight different crops: forest, grass, pine tree, corn, wheat, sugar beat and barley. The sensors covered the spectrum from the optical to the thermal domain. The measured radiance is used to calculate the BRDFs or directional thermal signature. This contribution describes the measurements and calculation of the BRDFs of forest, grassland, young corn, mature corn, wheat, sugar beat and barley during the EAGLE2006 and AGRISAR 2006 fieldcampaigns. Optical BRDF have been acquired for all crops except barley. Thermal angular signatures are acquired for all the crop

    Topography induced spatial variations in diurnal cycles of assimilation and latent heat of Mediterranean forest

    Get PDF
    The aim of this study is to explain topography induced spatial variations in the diurnal cycles of assimilation and latent heat of Mediterranean forest. Spatial variations of the fluxes are caused by variations in weather conditions and in vegetation characteristics. Weather conditions reflect short-term effects of climate, whereas vegetation characteristics, through adaptation and acclimation, long-term effects of climate. In this study measurements of plant physiology and weather conditions are used to explain observed differences in the fluxes. A model is used to study which part of the differences in the fluxes is caused by weather conditions and which part by vegetation characteristics. Data were collected at four experimental sub-Mediterranean deciduous forest plots in a heterogeneous terrain with contrasting aspect, soil water availability, humidity and temperature. We used a sun-shade model to scale fluxes from leaf to canopy, and calculated the canopy energy balance. Parameter values were derived from measurements of light interception, leaf chamber photosynthesis, leaf nitrogen content and <sup>13</sup>C isotope discrimination in leaf material. Leaf nitrogen content is a measure of photosynthetic capacity, and <sup>13</sup>C isotope discrimination of water use efficiency. For validation, sap-flux based measurements of transpiration were used. The model predicted diurnal cycles of transpiration and stomatal conductance, both their magnitudes and differences in afternoon stomatal closure between slopes of different aspect within the confidence interval of the validation data. Weather conditions mainly responsible for the shape of the diurnal cycles, and vegetation parameters for the magnitude of the fluxes. Although the data do not allow for a quantification of the two effects, the differences in vegetation parameters and weather among the plots and the sensitivity of the fluxes to them suggest that the diurnal cycles were more strongly affected by spatial variations in vegetation parameters than by meteorological variables. This indicates that topography induced variations in vegetation parameters are of equal importance to the fluxes as topography induced variations in radiation, humidity and temperature
    • …
    corecore